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Abstract

In this paper we explore three strategies that can be used to overcome the relative
disciplinary isolation of science and mathematics in the traditional high school
curriculum. The strategies are: essentializing, contextualizing, and problem-centering.
The differences among these integrative strategies are rooted in the goals of the
interdisciplinary curriculum and the purposes of the discipline driving the integration.
Essentializing raises the scientific and mathematical facts to a level of fundamental
concepts and helps establish internal connections within science and mathematics.
Contextualizing efforts create external ties between the scientific and mathematical
theories and their historical and cultural roots. Problem-centered integration (another
strategy for external integration) mobilizes different disciplinary tools toward the solution
of a pressing problem. We discuss the particular merits and constraints of each strategy,
substantiating our claims with examples from programs and courses at the Illinois
Mathematics and Science Academy (IMSA). Understanding the strengths and
weaknesses of each strategy can help educators choose the optimal way to present their
interdisciplinary material or to design hybrid approaches that build upon the strengths of
several strategies.
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Introduction

The integrative teaching of science and mathematics

Nothing is easy about integrating mathematics and science into the rest of the pre-
collegiate curriculum. The challenge comes from the specialization of knowledge in these
areas, the use of different sets of terminology, as well as a tradition of teaching these
subjects in a way that emphasizes singular facts and precise tools over broad concepts
and generalizable ideas. Even within the sciences and mathematics, the separation
between the different sub-fields is so rigorously maintained and the boundaries so clearly
drawn, that the internal integration within them is no small task. As Rob Kiely, a
historian of science at the Illinois Mathematics and Science Academy (IMSA), points
out:

The nature of scientific and mathematical discourse is no longer
intelligible to the average person. We are talking about a world where a
chemist and physicist no longer speak the same language! What is
happening to the scientific community? How is it separating itself from
the social discourse? Is that unavoidable as a function of special expertise?

This is not just a philosophical or a sociological question, but also a pedagogical one. The
divide between even closely related mathematical disciplines appears to be no smaller
today than the divide between  “the two cultures” of the sciences and the humanities that
exercised C.P. Snow in 1959. But is it really unavoidable? What tools does a teacher in
the high school classroom have to counteract this separation among the areas of
knowledge? Can the teaching of mathematics and science be made more integrative with
other areas of knowledge? If so, how?

In this study, we look closely at two kinds of integration. The first is internal
integration within science and within mathematics, where different branches of the same
tree are brought together through their common conceptual roots. The second kind of
integration is external integration, where science and mathematics exchange ideas and
tools with other fields outside of the paradigm of the scientific or logical-analytical
method. The external kind of integration may appear to be a more definitive case of
integration, as cross-paradigmatic bridges are established. However, the integration of
sub-fields of science and mathematics may be a necessary first step to connect more
distant epistemologies. Before scientific facts can be connected to historical events or
turned into tools for tackling urgent social and technological problems, they need to be
organized into the general concepts that underlie the discipline and unify it as one domain
of knowledge. Without this initial conceptualization and unification of the separate sub-
fields of science and math, further steps to connect science and mathematics to the
outlying fields of knowledge are more difficult to take. Also, internal integration is not
something to be taken for granted when it comes to establishing ties between scientific
and mathematical sub-fields. The specialization of knowledge is de rigueur in those
fields, and bringing the sub-fields together in the school curriculum represents a feat of
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coordination, collaboration, and letting go of many ingrained assumptions. Therefore,
both internal and external connections to science and mathematics are explored here.

Attempts to foster both the internal coherence among discrete mathematical and
scientific sub-fields, as well as the external dialogue between the hard sciences and the
humanities, have a long history in education. In the 1970’s, the humanistic trend in
psychology stimulated educators to center their curricula on core issues of the human
condition. Protest against valueless science led to efforts “to align the teaching of science
with social realities” or to use scientific concepts “to attack persistent problems of human
experience” (Hurd, 1975). The spirit of connecting the natural sciences to social and
human values produced a number of “unifying approaches” to the teaching of science in
the secondary school curriculum (Lindsay, 1970). “A path to the greatest fulfillment and
self-actualization” was envisioned in science (Maslow, 1971). Educators at the time,
however, tended to downplay the fundamental distinction in the epistemological agendas
of the natural sciences and the humanities, citing “differences in detail” and not of
substance (Lindsay, 1970). Some educators proposed integrative strategies such as
organizing the curriculum around urgent problems of humanity and showing science “as
a product of culture and cultural evolution“ (Ost, 1973). Most of these attempts, however,
remained marginal to science education itself, possibly because they did not engage the
scientific content in a deep and constructive way.

In recent years, the push to overcome the chasm between science and art, as well as the
separation between biology and physics has reemerged. Today, the scientific community
is achieving progress through breaking disciplinary seams and bursting into new domains
that seemed hermetically sealed before. An enhanced rate of informational exchange in
the last two decades has provided fertile conditions connecting disparate bodies of
knowledge. Some scientific advances such as xenotransplantation or cloning technology
make withdrawal of the sciences from broader social considerations lamentable.

Yet, despite this urgency for fluid interaction among sub-fields in the hard sciences and
with the humanities, much of science and mathematics teaching at the pre-collegiate level
continues to observe the bounds of narrow sub-fields. Furthermore, all too often such
sub-fields are represented as (indeed reduced to) collections of facts and formulas to be
utilized to address decontextualized problems.  Higher levels of disciplinary thinking
(e.g., developing mathematical proofs or constructing original testable hypotheses) are
noticeably absent from many mathematics and science classrooms. Equally absent are
attempts to open science to the humanistic concerns from which it has sprung.

Proposed here are three core approaches to the teaching of science and mathematics in
integrative ways that differ from one another in form and purpose. These three strategies,
which we call essentializing, contextualizing, and problem-centering, ask different
questions of mathematics and science and serve different learning goals. They are a result
of an analysis of exemplary teaching designs at the Illinois Mathematics and Science
Academy. Our data were collected through semi-structured interviews with thirteen
teachers, five administrators, and five students, as well as nine classroom observations.
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We also compiled and reviewed a series of curriculum materials and publications by
IMSA faculty1.

The three integration strategies portrayed here represent distinct ways in which
knowledge in different fields can come together in a classroom. The first strategy,
essentializing, involves identifying core concepts that are central to two or more
disciplines (e.g., change, linearity) providing a substantive bridge among them. We
define the second strategy, contextualizing, as the connecting of a particular discovery or
theory (e.g. theory of relativity) to the history of ideas of that time. The third strategy,
problem-centering, involves enlisting the knowledge and modes of thinking in two or
more disciplines (e.g., biology, mathematics) to address particular problems, develop
specific products, or propose a course of action (e.g., develop a conservation policy).

A hypothetical example of an integrative unit on evolution can help clarify the
differences among the strategies. Evolution could be discussed from multiple scientific
and mathematical perspectives as representing the concept of change over time, for
example. Biology, physics, and mathematics teachers can represent the concept of change
in their respective disciplines. This type of disciplinary bridging illustrates the
essentializing strategy. Alternatively, the material on evolution could be presented in
class through a discussion of the historical and philosophical precursors of Darwin’s
discovery, his voyage on the Beagle, and the implication of evolutionary theory for what
it means to be human. A teacher who takes this approach will be applying a
contextualizing strategy. Yet another way to teach evolution in an integrative way is to
present students with a tangible problem that could be solved with the help of some
aspects of evolutionary theory. This would constitute a problem-centered approach to
integrating material on evolution.

While the specific application of a strategy is, to a large extent, shaped by the disciplines
involved (e.g., mathematics, science, history), analysis of teaching practices at other
exemplary inter-disciplinary pre-collegiate programs has generally corroborated the
validity of these strategies beyond the particular disciplines addressed in this paper. Our
focus is on examining each strategy in depth—grounding our analysis in IMSA’s
classroom examples and highlighting the strengths and weaknesses of each strategy. The
concluding section provides an overview of the inter-relationship among strategies and
suggests constructive ways to combine them.

                                                
1 Interview participants were selected based upon the recommendation of IMSA’s Vice President for
Educational Programs and Services, Connie Hatcher, and IMSA’s President, Stephanie Marshall. Criteria
for selection included participants’ commitment to interdisciplinary learning and teaching as well as their
thoughtful consideration of interdisciplinary pedagogy and assessment strategies. IMSA is uniquely suited
to inform this inquiry for the following reasons: 1) it is institutionally mandated to promote excellence in
mathematics and science education, 2) its faculty and administration are committed to integrative learning,
3) it upholds a rigorous disciplinary standard in its interdisciplinary work, and 4) it has produced a
representative sample of these strategies over the course of a long history of experimenting with a variety
of integrative pedagogies.
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I. Integrative Strategy #1: Essentializing
Fostering conceptual thinking in mathematics and science

Essentializing is an integrative strategy designed to take students’ thinking beyond the
facts and tools of science and mathematics to the level of the underlying ideas that expose
their relatedness. Algebra and geometry, physics and biology, history and geology can be
brought together around core concepts such as linearity, change, and scale. Thinking
conceptually about science and mathematics means thinking in terms of unifying
scientific ideas or mathematical constructs that have the potential to produce sharable
tools and understandings. Leonardo Frid (1995) summarizes the essence of this strategy:

Science, like other mythologies, attempts to retell this story in its own
vocabularies: in numbers and formulas, in the documentation of pattern
and repetition in Mathematics, Physics, Chemistry, and Biology; these are
the dialects with which we retell our own existence; these are the links
with which we write our scripts. But each discipline alone tells only one
fraction of the story; harnessed together they give rise to depth, and tone,
and color.

Essentializing the content of the different disciplinary vocabularies or “dialects” to core
concepts or patterns that “tell a story” is at the heart of all integrative efforts at IMSA.
The courses designed to teach students how to reason in mathematics and science are
offered as part of the programs called Mathematical Investigations (MI) and Scientific
Inquiries (SI). These are the main vehicles for the delivery of the science and
mathematics curricula. The official brochure, describing IMSA’s MI Program, explains:

The main building blocks of the MI curriculum is the content/concept unit.
Each unit addresses different content ideas centered around a single
mathematical concept. This gives students insight into how different areas
of mathematics fit together. For example, the Linear Thinking unit
explores equations and inequalities, graphs, geometry, data analysis, and
modeling into which the concept of linearity gives insight. The Function
unit tackles functions and more general relationships from graphical,
tabular, and algebraic viewpoints.

Integration in programs such as MI and SI happens within the larger fields of science and
mathematics, rather than beyond them. MI, for example, is designed to present concepts
from “pre-calculus mathematics, including algebra, geometry, trigonometry, data
analysis, and discrete mathematics” in a unified and connected way (Marshall 2001). SI
is similar to MI in that it is “the concepts, the principles, the deep constructs of a
discipline” (Marshall 2000) that guide students through the curriculum, which weaves
together earth sciences, life sciences, and natural sciences. An inquiry into the concept of
“scale,” for example, spans the study of the diameter of an atom in contrast to the
distance to the nearest star (physics and astronomy), the comparison of the speed of light
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to that of a speeding bullet (physics), the investigation of an organism at a cellular level
(biology and molecular biology), the investigation of the weather versus climate (earth
science), and the study of geologic time in relation to the human lifespan (geology and
human biology).

Students in the SI program are asked to uncover or build connections that are
quantifiable, mathematically solid, and generalizable. For example, to answer the
question of how the atmosphere acts as a radiation filter, students bring together
chemistry (how bonds between the oxygen molecules in the ozone can be broken),
physics (to describe how ray energy makes molecules vibrate similar to string action),
and math (to calculate the frequency of these vibrations or oscillations per second) in
order, as one student explains, “to find the wavelength necessary to break the bond
between two atoms.” The student then translates this figure back into chemical or
environmental terms to conclude that the “free oxygen atom (the result of an ozone split)”
could potentially bind with an oxygen molecule in ClO and release into the atmosphere
an unstable and polluting gas Cl2. “What is the implication of this chemical reaction for
the environment?” the student asks. She goes on to answer, “Since the chlorine ends up
unbonded at the end, it continues to destroy ozone.” It is not just a collection of chemical,
physical and biological ideas that the student brings together, but a mathematical matrix
of relationships that she constructs using the tools of different disciplines. The end
product of this effort is a “strong correlation” between atmospheric pressure and
atmospheric temperature, between the chemical reactions in the atmosphere and the
probability of the preservation or destruction of ozone, given the physical and chemical
constraints.

A combined MI/SI course, offered by teachers Susan Yates and John Eggebrecht, goes a
bit further to connect concepts in math to those in science. Teachers in this team-taught
course help students link a mathematical algorithm to a physical phenomenon. For
example, the same concept of linearity, when examined through the lenses of both math
and science, produces a joint understanding of a “linear relationship of energy and
frequency” (MI/SI Materials). The goal of the curriculum, Susan Yates explains, is to
have mathematics live “in the world beyond the x-y plane.” Yates and Eggebrecht have
math and physics “speak in one tongue” — the tongue of fundamental scientific concepts.
They explain that “establishing a common language, which bridges the discipline
boundary,” means identifying core foundational principles that transcend both domains.

The SI and MI programs are good examples of internal integration of different sub-fields.
Such integration results in unifying and preparing the whole field for further external
connection to other disciplines. Internal integration efforts may not have the appearance
of the integrative daring of the other interdisciplinary strategies, which break out of the
boundaries of the scientific method. In fact, using unifying concepts to teach science and
math curriculum is not the monopoly of integrative programs. The ability to build
“coherent and rich conceptual webs” and flexibility to “relate the criteria by which
knowledge is built and validated” (Boix Mansilla & Gardner in: Wiske, 1998) is
described as one of the salient features of disciplinary learning at its best. Emphasis on
conceptual thinking at IMSA indeed has been very successful in fostering solid and
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purely disciplinary skills in science and mathematics. But the point where the
disciplinary learning culminates and reaches full fruition is the point at which the
interdisciplinary understanding begins to gain speed.

Essentializing, when applied to math and science, is not just the training ground for wider
and bolder external connections. It is a rigorous, integrative activity in and of itself. In
fields such as the arts and the humanities, conceptual linking occurs naturally and fluidly.
History and literature constantly talk to each other to find answers to common questions
of human existence. In science and mathematics, however, internal connections are more
elusive, because of a tradition of separate terminologies, different methods of proof and
verification, and distinct epistemologies.

Therefore, conceptual links even within the scientific and mathematical disciplines
demand an effort on the part of the teacher and the student. Because the connections in
this model occur at the level of discipline-grounded concepts and practices rather than
general philosophical ideas, they involve a deliberate and often non-intuitive effort of
coordination. They are produced “by design” (Marshall 2001), and not by happenstance.
The role of the teacher as a translator across different systems of disciplinary
representation is absolutely crucial and needs to be emphasized even at IMSA. According
to Yates, who teaches mathematics, “Students on their own often don’t see the
connection between using different variables to describe the same underlying pattern.
They don’t see the pattern. They don’t see the transfer.” To them, the same notations
have very different meanings in mathematics and in the natural sciences. “The subscripts
in chemistry,” Yates points out, “mean something entirely different than subscripts in
mathematics. Exponents in chemistry or the positives and negatives for the molecules, we
use them differently in mathematics.” Teachers in both disciplines often fail to stop and
think through the connections with students. “On the mathematics side,” Yates adds, “I
don’t think we go around looking for those things necessarily. And, if mathematics
teachers don’t talk about the nature of connection and disconnection between
mathematical and chemistry concepts, the chemistry and physics teachers who use
mathematics as a tool “don’t pick it up on the other end either.” Their thinking is, Yates
describes, “I should not have to stop to talk about how I have to connect statistics to be
able to come up with a regression equation to explain what I’ve done in the lab. It should
be automatic transfer.”

But this kind of transfer is far from automatic for most students. The transfer of
knowledge to new disciplinary material or “subscripts” is “hard” (Yates), because
symbols and methods in different disciplines look and act differently. Yates suggests that
“stopping to talk” about the underlying unity among concepts may be imperative in this
case because otherwise “[the students] don’t see that they can change ideas, and teachers
haven’t done a lot of integrating across disciplines.”

On the other hand, when teachers do take the time and effort to guide students through
multiple representations of the same concept, students report “aha” moments. They
discover the underlying coherence among facts and theories they had earlier regarded as
unrelated. For example, student Danny Yagan describes how, with the help of his
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calculus teacher, he began to see that “when you are talking about magnetic waves, you
are talking about flux in the mathematics class, which is exactly the same thing —
exactly the same mathematical representations.” It struck him that “these two systems do
not only complement each other” but are “the same understanding but at different
angles.” He continues:

My calculus teacher would always refer to calculus problems in physics as
well as give us real-world examples of this abstract [notion]. He would put
up on the board two ways of arriving at the same fundamental equations
for projectile motion: ‘This is the calculus way, and this is non-calculus
way. And, this is how it makes sense.’ Both ways. Literally, step by step
on each way. He was a really good teacher in that respect. Even in physics
course, algebraic equations were introduced. And it made sense to me.
Later on in calculus, my teacher applied what we learned in calculus to
those motion equations.

Once the student has been guided to discover the essential unity between the physical and
logical worlds, he or she may be able to go further and seek more challenging
connections to the humanities and social sciences. What helps to close the gap in the SI
program is the inclusion of epistemological discussions about the nature of science and
the scientific method. Sensitizing students to what it means, in the words of IMSA’s
humanities and history of science teacher Rob Kiely, “to think scientifically, to frame a
question, the basics of good lab work, the relationship between data analysis, data
collection, conclusion, what a scientific theory is and how theories change, the revisionist
character of scientific thinking,” makes them ripe for seeking and finding connections
within and beyond the scientific and mathematical disciplines.

Thus, essentializing is a strong model for integrative work. It raises factual information to
the level of conceptual abstraction from which transfer becomes possible. Still, in the
case of math and science, which are characterized by high specificity of terminology and
methodology and the cumulative nature of knowledge, essentializing represents a
substantial pedagogical and curricular effort. It requires massive coordination, re-
sequencing, and restructuring of the material around unifying concepts rather than
disciplinary lines. Links are built one plank of solid proof at a time, and therefore the
process is more laborious and time-consuming. It cannot be accomplished in any
comprehensive manner without a firm institutional commitment and the willingness of
the teachers to work together in a new way. Teachers need to be deliberate and consistent
translators of disciplinary languages so that the students can see symmetries and piece
together a coherent story told, as Frid put it, in different disciplinary “dialects.”

II. Integrative Strategy #2: Contextualizing
Weaving mathematics and science into the history of ideas

Contextualizing is an external integrative strategy that places scientific and mathematical
knowledge in the context of cultural history and the history of ideas. Science and
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mathematics are represented not so much by their separate theories and practices but by
their common philosophical foundations and historical roots. Historical, philosophical, or
epistemological foundations of a particular scientific theory can all serve as contexts, or
as the “organizing centers of the integrative curriculum,” as one of IMSA’s top
administrators, Michael Palmisano, describes.

Formalized in the Perspectives Program, which represents a history of ideas curriculum,
and in their humanities courses, contextualization is an important integrative strategy at
IMSA. Rob Kiely, a faculty member who is actively involved in revising the Perspectives
Program, explains that the goal of the program is to understand “the development of
scientific thinking chronologically in the context of the history of ideas.” Questions that
are part of this integrative inquiry might include, “Why did scientific thinking develop in
Western Europe, and how was that related to Greek philosophy, revealed religion,
political circumstances up until the 17-18th century? Why is it necessary to understand St.
Augustus to understand Isaac Newton?” Kiely goes on to say that, for this kind of a
curriculum “definitions of truth, ways of knowing — that’s what’s really central.” The
“connecting tissue” between the natural sciences and the humanities are not the core
concepts of those disciplines, but rather the philosophical, historical, and cultural roots of
those concepts. “Roots, not the branches,” Kiely emphasizes.

A good example of the application of this strategy occurs in a Perspectives Program
seminar on the development of navigation in the 16th century. Astronomy, astrology,
geometry, metallurgy, painting, geography, shipbuilding and sailing came together
seamlessly in this seminar to illuminate the emergence of abstract thinking about space.
A history teacher talked about the navigational techniques, instruments, and voyages of
exploration of the time; a math teacher explained analytical geometry and the
development of graphing techniques that lead to two-dimensional representations in
terms of latitude and longitude; a physics teacher briefed the students on “modern global
positioning satellites — how we now use abstract notions of space, rather than orient by
stars;” and an art teacher brought in the notion of three-dimensional space in Renaissance
painting. As a result, mathematics, physics, and art were brought together as reflections
of a particular moment in history and as products of a certain culture.

Unlike essentializing, which focuses on building internal coherence within the fields of
science and mathematics, contextualizing achieves broad external connections between
distant disciplinary shores. While making mathematical concepts connect to humanist or
artistic concerns seems almost an impossibility in essentializing, it is not a problem in
contextualizing because math is reinterpreted as a carrier of a particular philosophy or a
reflection of a particular historical moment.

The strength of this model is its broad reach of disciplines, its ability to move easily and
seamlessly across distant epistemologies, and its support in making abstract knowledge
personally meaningful. Students in these classrooms reported profound experiences of
suddenly seeing how once disconnected ideas reverberate in culture and time and become
relevant to themselves. Doug Robinson, a Perspectives student, reported that the world of
mathematical abstraction suddenly came alive in his mind through this cultural and
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historical reference. To Kiely, integrating the teaching of science with intellectual history
is the optimal form of integration:

The only way to really integrate science and the humanities in a
fundamental way is around the definition of truth. The idea is to
demonstrate how scientific thinking proceeds from the epistemological
efforts of humanity and show it against the broad context of human ways
of knowing — mythological, religious, and philosophical — how it
proceeds from a very complex dialogue on what is truth.

While the contextualizing strategy taps some important aspects of the discipline, such as
its methodological and philosophical foundations, it leaves out other crucial elements
such as scientific and mathematical practices, facts, and proofs. Kiely admits that
perfecting particular techniques and methods of math is not the objective of the
contextualizing approach. The most significant impact of this kind of integration is not
the advancement of lab techniques and experimental procedures. The purpose of
contextualizing efforts, according to Kiely, is to consider how science is relevant to the
rest of the world:

[Scientists in the 21st century] do not lack technical expertise; they lack
wisdom. We live in a world where biology enables our ability to
manipulate the human genome … [which] is far ahead of our legal or
philosophical ability to regulate how to use this knowledge in fruitful
ways. How do we help scientists express the nature of scientific thinking
to the general public? How do we help scientists think in an ethical
context? How do we help scientists decide whether or not certain
questions should be pursued?

These are the questions that the contextualizing of science, math, and technology can
effectively address. Students typically come out of these classes transformed and inspired
to go further in science and mathematics because their fields have been made relevant to
their lives.

This model of integration does no less important work for science and math than the
conceptual deepening of scientific facts and theories. While it does not directly teach
advanced techniques, it puts the disciplines in a broader context and thus can teach
students about the social responsibility of science and technology. Social, historical, or
epistemological contextualization of science and math is in no way a replacement for
essentializing scientific or mathematical concepts. The history or philosophy of science is
not a substitute for science, nor is it desirable to turn a lab into a venue for a
philosophical debate. These two models serve different purposes and do different kinds
of work in the classrooms. Their coexistence in the school curriculum, perhaps even in
the same classroom, could potentially maximize the strength of each model while
compensating for some of their limitations.
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III. Integrative Strategy #3: Problem-centering
Applying math and science to solving real-world problems

Focus on a tangible problem rather than on enhancing disciplinary or metadisciplinary
understanding defines the third integrative strategy and determines a special kind of
relationship among the disciplines.

IMSA is well positioned to represent a problem-centered curriculum at a pre-collegiate
level. Problem-Based Learning (PBL) is the pedagogy that IMSA developed and
exported to other schools. Although authentic PBL classrooms that follow the precise
protocol that IMSA devised are rare even at IMSA, problem-centering of the curriculum
is common in all of its classrooms.

What does problem-centering look like in practice? According to IMSA’s Stepien and
Gallagher (1993), a problem-based unit may present students with “an ill-structured
problem” from the real world, one with multiple points of entry. For instance, students
may be asked to advise a couple whose fetus has been diagnosed with anencephaly on
whether they should terminate the pregnancy. Decision-making and action is an
important charge of problem-centered learning. Learning is transformed from a
contemplative process that generates deeper self-understanding and disciplinary
knowledge to an action-driven series of steps. These steps typically include answering
three main questions: “What do we know? What do we need to know? What should we
do?” (Stepien, Gallagher, & Workman, 1993).

The way mathematics and science participate in problem or context-centered integration
differs from the way they participate in the essentializing effort. To answer the question
“how would you build a colony on Mars?”, for example, students bring in sociology,
biology, physics, chemistry, technology, and psychology and put them through the
convergent lens of a problem. This lens reveals the parts of the disciplinary content that
need to be borrowed on a short-term and single-problem basis. Similar to contextualizing,
problem-centering can bring different fields in close interaction with one another and
thus foster broad external connections between the sciences and other fields.

Although problem-centered learning could be part of any classroom, some disciplines
seem to be more regular and consistent users of this strategy. These tend to be social
science disciplines, such as ecology or economics, that target socially relevant problems
as the subject of their analysis. An ecology teacher at IMSA, John Thompson, routinely
uses biology, chemistry, earth science, literature, foreign languages, visual arts, and
computer technology to address environmental issues. Thompson’s classes involve doing
ecology rather than learning about it. The classes feature field activities, digital imaging
analysis, prairie populations studies, computer labs, orienteering, soil community
analysis, among others. An Energetics unit, for example, is explored through statistical
analysis (mathematics), biochemistry and thermodynamics, discussion of the value of the
fur trade in the colonization of North America (history), writing a research paper
(English), and using personal digital assistants (PDAs) for data collection (technology).
Students typically come out of these experiences with enhanced knowledge of particular
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aspects of particular theories, but more important, they produce a plan to resolve a
complicated environmental issue.

Michael DeHaven’s economics class, likewise, depends on borrowing languages and
tools of other domains to address financial issues. To advise Goldman Sachs on whether
a privately held partnership should become a publicly traded corporation, for example,
students have to apply microeconomic theory (economics), “interpret the significance of
game theory on market structures” (mathematics), and “assess government roles in
regulating market structures” (political science). These are just a few disciplines whose
tools are put to the service of an “ill-structured problem” regarding the public offering.
Addressing such problems involves mapping the problem territory, bringing together all
of the relevant disciplinary tools in order to provide a rich description of the problem,
isolate its “primary issue,” and define what the solution might be. In the process of
generating an answer from these various sources, students confront differences in
perspective and have to reconcile them. Thus, the final report is a synthesis of
mathematics, science, sociology, and other disciplines.

The advantage of this pragmatic orientation toward interdisciplinary interaction is that it
brings together a wide range of disciplines. Also, the disciplinary content and tools of
these disciplines are used with precision and rigor rather than in a generalized and
abstract way. Unlike contextualizing science and math, in which the conversation among
disciplines happens at a broad level of metadisciplinary reflection (e.g., how the theory of
relativity relates to the philosophical questioning of certainty under way in late 19th

century), the scientific/mathematical tools and procedures are engaged in the problem-
centering approach thoroughly, if not extensively. As a result, the student might actually
perfect his/her skill of statistical analysis or learn more about molecular weights as he/she
assesses the contamination of groundwater. When mastery of disciplinary tools serves a
compelling problem, significant and highly motivated learning of mathematical and
scientific theories can occur.

The constraint of this model is its potential decontextualization and narrowing of the
discipline. Problem-centered models often tap selective disciplinary procedures (e.g.,
Fibonacci numbers from mathematics, the concept of land ownership in the Middle Ages
from history) without a thorough exploration of their wider philosophical or
methodological underpinnings. According to one student at IMSA, Doug Robinson, “You
may understand one problem, but you may not see the underlying principles.” Also, he
continues, “You may get at certain fundamentals more than others.” Both the ecology
teacher John Thompson and the economics teacher Michael DeHaven are aware of these
pitfalls and go the extra mile to have students build up a broader context for the problem.
For example, they guide students to see the data (e.g., monetary crisis or pollution) as
results of human action that are culturally shaped and politically changeable. In doing so,
they complement the problem-centered model with a contextualizing approach that
allows students to gain a broader perspective. Problem-centering tends to be a highly
transferable strategy. It offers the point of connection that provides motivation for
negotiating and reconciling disciplinary differences. Science and math often find
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themselves as valuable partners in this conversation as they lend tools and practices for
collective inquiry into a complex issue.

Summary

Strategies and their inter-relationship

The three vehicles of integrating science and mathematics into the pre-collegiate
curriculum reveal different symmetries and relationships among areas of knowledge.
They serve different purposes and engage different parts of the discipline. The table
below provides a summary description of the strengths and weaknesses of each of the
described strategies and proposes ways to address potential blindspots of different
strategies in classroom practice.
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Strategies Strengths Weaknesses Ways to compensate for
weaknesses

Essentializing • Rigorous correlation of related
knowledge areas

• Fosters inner coherence in the
broader field of science and
mathematics

• Exchange is rich in discipline-
specific content (e.g. theories,
concepts)

IV. Limited breadth of
connection,
constrained to sub-
fields of science and
mathematics only

V. Does not provide a
personal reference
point for the learner

• Discussions of scientific
methodology and historical
circumstances of discoveries

• Presents some of the content
through real-life problems

Contextualizing • Ease of making external
connections between unrelated
areas of knowledge

• Scientific knowledge is made
personally relevant

• Philosophical roots of science
and mathematics are explored

• Students’ awareness of the
implications of science and
mathematics for society at
large is heightened

• No intensive exploration of
the disciplinary facts and
practices is undertaken

• Disciplinary dialogue
happens at a
metadisciplinary level —
level of social meaning of
mathematics and science

• Methodological discussions
might help introduce more
of the disciplinary content
of science and mathematics

• Examples of how a certain
problem was addressed
differently in a different
time period might help
illuminate both the content
of the problem and the
changing times

Problem-centering • Students’ attention and
creativity are fully mobilized
by the urgency of the problem

• Inspires activist approach to
learning and knowledge in
students

• Motivated and thorough
mastery of the disciplinary
content (e.g. facts, practices,
theories) occurs as a result

• Unrelated disciplines come
together easily in this model,
as differences between them
are addressed decisively and
pragmatically

• Learning is highly targeted
to the problem and
therefore coverage of the
field is limited to relevant
tools and theories only

• Reflection and deliberation
on the discrepancies in the
disciplinary approaches is
minimal

• Historical and cultural
survey of the problem can
help find additional
solutions or understand the
complexity of the problem
more fully

• Broader view of the whole
field of mathematics or
science can also generate
new solutions and
perspectives on the problem
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Thus, essentializing is designed to deepen disciplinary understanding and build coherence
between disciplines at the level of core concepts. Stringent disciplinary standards govern
the connections that are generated; tight correlations between concepts in different
disciplines are sought. This tends to put a limit on the length of the bridge that is
constructed. The strength of this model is in the richness of disciplinary content that is
being represented and the tightness of correlations that are being established across
different disciplinary representations of core concepts.

By contrast, contextualizing helps science and mathematics reach out beyond themselves
by placing them within the contexts of cultural evolution and the history of ideas. Woven
into the fabric of the history of civilization and addressing fundamental questions of
human existence, scientific and mathematical discoveries become a strong and
inseparable thread. Not only are the neighboring disciplines of trigonometry and
algebraic functions brought together, but one can also imagine a classroom where they
enter into a conversation with history or poetry. Disciplines here act as worldviews,
products of a certain civilization at a certain moment in time, or threads in the fabric of
history.

Problem-centering uses an ill-structured problem, rather than history or culture, as a point
of connection between science or mathematics and any other discipline. It makes
connections between ideas precise and pragmatically relevant. No investigation of
broader disciplinary context of the issue or different tools is typically undertaken, nor
does one typically spend much time on concept-building or deriving historical meaning
from mathematical or scientific data in this model. Problem-centering as a strategy
pursues a clearly defined goal: to resolve an urgent, tangible, and complex problem that
invites or demands input from several fields. Unlike the essentializing or contextualizing
models, which are guided by a more contemplative task of building coherence among
areas of knowledge or promoting self-understanding, the problem-centering model is
aimed at generating critical action. The integrative strength of this model lies in its
flexibility to reach out and include a wide spectrum of disciplines as well as to encourage
the mastery of disciplinary content. The blind spot of this strategy could be the pragmatic
narrowness of the disciplinary exploration. Nevertheless, the motivational and integrative
power of this strategy is notable.

Going back to our opening example of a unit on evolution, it is easy to show that the
three strategies of integrated teaching are not mutually exclusive. In many classes and in
the hands of many good teachers, several strategies can work together. Very often, a
historical reference to Darwin’s voyage and the discussion of the significance of his ideas
for contemporary scientific thinking accompany a biological survey of the theory of
evolution. Instructors may also touch upon the practical implications of the theory of
evolution for agriculture or genetic counseling. Understanding how each strategy works
can help teachers achieve the most productive synthesis in the classroom.

So, mathematics and science teachers can learn from the humanities faculty about the
history of ideas in their fields, and center their curricula on problems from the real world.
Conversely, a problem-centered pedagogy would profit from a richer historical context
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(e.g., discussion of the culture of Wall Street and how it evolved in the context of a
capitalist economy) and essentializing (e.g. exploration of the mathematical concepts  and
axioms behind the statistical methods). Contextualizing efforts, in turn, may benefit from
a reminder of the rigor of correlations that exist when such connections are made between
scientific or mathematical concepts.

While the above analysis is based on classroom practices at IMSA, teachers in any school
setting and in any subject area can benefit from keener awareness of the different
frameworks that they have available to them as they design their own interdisciplinary
curricula. By inviting humanities and social science teachers to provide an historic
context for scientific discoveries, for example, or by  problem-centering of the inquiry in
any subject area, they will tap certain kinds of learning opportunities and limitations
associated with the application of that strategy. They will have to search for hybrid ways
to build a particularly effective interdisciplinary exchange that reflects their teaching
goals.
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